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Abstract. We propose a method which allows us to develop tableaux
modulo theories using the principles of superdeduction, among which
the theory is used to enrich the deduction system with new deduction
rules. This method is presented in the framework of the Zenon automated
theorem prover, and is applied to the set theory of the B method. This
allows us to provide another prover to Atelier B, which can be used to
verify B proof rules in particular. We also propose some benchmarks,
in which this prover is able to automatically verify a part of the rules
coming from the database maintained by Siemens IC-MOL.
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1 Introduction

In this paper, we propose to integrate superdeduction [3] (a variant of deduction
modulo) into the tableau method in order to reason modulo theories (see also [4]
for a similar approach). This integration is motivated by an experiment which is
managed by Siemens IC-MOL regarding the verification of B proof rules [5]. The B
method [1], or B for short, allows engineers to develop correct by design software
with high guarantees of confidence. A significant use of B by Siemens IC-MOL
has concerned the control system of the driverless metro line 14 in Paris. B is a
formal method based on set theory and theorem proving, and which relies on a
refinement-based development process. The Atelier B environment is a platform
that supports B and offers both automated and interactive provers. To ensure
the global correctness of formalized applications, the user must discharge proof
obligations. These proof obligations may be proved automatically, but otherwise,
they have to be handled manually either by using the interactive prover, or by
adding new proof rules that the automated prover can exploit. These new proof
rules can be seen as axioms and must be verified by other means.



In [5], we develop an approach based on the use of the Zenon automated theo-
rem prover [2], which relies on classical first order logic with equality and applies
the tableau method. In this context, the choice of Zenon is strongly influenced
by its ability of producing checkable proof traces under the form of Coq proofs
in particular. The method used in this approach consists in first normalizing the
formulas to be proved, in order to obtain first order logic formulas containing
only the membership set operator, and then calling Zenon on these new formulas.
This experiment gives satisfactory results in the sense that it can prove a signifi-
cant part of the rules coming from the database maintained by Siemens IC-MOL.
However, this approach is not complete and suffers from efficiency issues due to
the preliminary normalization. To deal with these problems, the idea developed
in this paper is to integrate the B set theory into the Zenon proof search method
by means of superdeduction rules. This integration can be concretely achieved
thanks to the extension mechanism offered by Zenon, which allows us to extend
its core of deductive rules to match specific requirements.

The paper is organized as follows: in Section 2, we present the computation
of superdeduction rules from axioms in the framework of the tableau method
used by Zenon; we then introduce, in Section 3, the superdeduction rules corre-
sponding to the B set theory; finally, in Section 4, we describe the corresponding
implementation and provide some benchmarks concerning the verification of B
proof rules coming from the database maintained by Siemens IC-MOL.

2 From Axioms to Superdeduction Rules

Reasoning modulo a theory in a tableau method using superdeduction requires
to generate new deduction rules from some axioms of the theory. The axioms
which can be considered for superdeduction are of the form ∀x̄ (P ⇔ ϕ), where
P is atomic. This specific form of axiom allows us to introduce an orientation
of the axiom from P to ϕ, and we introduce the notion of proposition rewrite
rule (this notion appears in [3], from which we borrow the following notation and
definition). The notation R : P → ϕ is a proposition rewrite rule and denotes the
axiom ∀x̄ (P ⇔ ϕ), where R is the name of the rule, P an atomic proposition,
ϕ a proposition, and x̄ the free variables of P and ϕ.

As said in the introduction, one of our main objectives is to develop a proof
search procedure for the set theory of the B method using the Zenon automated
theorem prover [2]. In the following, we will thus consider the tableau method
used by Zenon as the framework in which superdeduction rules will be generated
from proposition rewrite rules.

The proof search rules of Zenon are described in detail in [2] and summa-
rized in Figure 1 (for the sake of simplification, we have omitted the relational,
unfolding, and extension rules), where ε is Hilbert’s operator, capital letters are
used for metavariables, and Rr and Rs are respectively reflexive and symmetric
relations. As hinted by the use of Hilbert’s operator, the δ-rules are handled by
means of ε-terms rather than using Skolemization. What we call here metavari-
ables are often named free variables in the tableau-related literature; they are
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Fig. 1. Proof Search Rules of Zenon

not used as variables as they are never substituted. The proof search rules are
applied with the normal tableau method: starting from the negation of the goal,
apply the rules in a top-down fashion to build a tree. When all branches are
closed, the tree is closed, and this closed tree is a proof of the goal.

Let us now describe how the computation of superdeduction rules for Zenon
is performed from a given proposition rewrite rule.

Definition 1 (Computation of Superdeduction Rules). Let S be a set of
rules composed by the subset of the proof search rules of Zenon formed of the
closure rules, the analytic rules, as well as the γ∀M and γ¬∃M rules. Given a
proposition rewrite rule R : P → ϕ, two superdeduction rules (a positive one R
and a negative one ¬R) are generated.

To get the positive rule R (resp. the negative rule ¬R), initialize the procedure
with the formula ϕ (resp. ¬ϕ). Next, apply the rules of S until there is no open
leaf anymore on which they can be applied. Then, collect the premises and the
conclusion, and replace ϕ by P (resp. ¬ϕ by ¬P ) to obtain the positive rule R
(resp. the negative rule ¬R).

If the rule R (resp. ¬R) involves metavariables, an instantiation rule Rinst

(resp. ¬Rinst) is added, where one or several metavariables can be instantiated.



Axioms

(x, y) ∈ a× b⇔ x ∈ a ∧ y ∈ b a ∈ P(b)⇔ ∀x (x ∈ a⇒ x ∈ b)
x ∈ { y | P (y) } ⇔ P (x) a = b⇔ ∀x (x ∈ a⇔ x ∈ b)

Derived Constructs

a ∪ b , { x | x ∈ a ∨ x ∈ b } a ∩ b , { x | x ∈ a ∧ x ∈ b }
a− b , { x | x ∈ a ∧ x 6∈ b } ∅ , BIG− BIG

{ e1, . . . , en } , { x | x = e1 } ∪ . . . ∪ { x | x = en }

Binary Relation Constructs: First Series

a−1 , { (y, x) | (x, y) ∈ a }
dom(a) , { x | ∃y (x, y) ∈ a } ran(a) , dom(a−1)

a; b , { (x, z) | ∃y ((x, y) ∈ a ∧ (y, z) ∈ b }
id(a) , { (x, y) | (x, y) ∈ a× a ∧ x = y }
aC b , id(a); b aB b , a; id(b)

Fig. 2. Axioms and Constructs of the B Set Theory

3 Superdeduction Rules for the B Set Theory

The B method [1] is based on a typed set theory, which consists of six axiom
schemes defining the basic operators and the extensional equality. The other
operators (∪, ∩, etc.) are defined using the previous basic ones. Figure 2 gathers
a part of the axioms and constructs of the B set theory, where BIG is an infinite
set. In this figure, we only consider the four first axioms of the B set theory, as
we do not need the two remaining axioms in the rules that we want to verify (see
Section 4). Due to space restrictions, we only present the main constructs, even
though we can deal with other constructs (like functions) in our superdeduction
system. Compared to [1], all type information has been removed from the axioms
and constructs thanks to the modularity between the type and proof systems.

To generate the superdeduction rules corresponding to the axioms and con-
structs defined in Figure 2, we use the algorithm described in Definition 1 of
Section 2, and we must therefore identify the proposition rewrite rules. On the
one hand, the axioms are of the form Pi ⇔ Qi, and the associated proposition
rewrite rules are Ri : Pi → Qi. On the other hand, the constructs are expressed
by the definitions Ei , Fi, where Ei and Fi are expressions, and the correspond-
ing proposition rewrite rules are Ri : x ∈ Ei → x ∈ Fi. The superdeduction
rules are then generated as described in Figure 3 (except the instantiation rules
associated with rules involving metavariables, due to space restrictions). The
computation of these superdeduction rules goes further than the one proposed
in Section 2, since given a proposition rewrite rule R : P → Q, we apply to
Q not only all the rules considered by Definition 1, but also the new generated
superdeduction rules (except the rules for the extensional equality, in order to
benefit from the dedicated rules of Zenon for equality) whenever applicable.



Rules for Axioms

(x, y) ∈ a× b
×

x ∈ a, y ∈ b
a ∈ P(b)

P
X 6∈ a | X ∈ b

x ∈ { y | P (y) }
{|}

P (x)

(x, y) 6∈ a× b
¬×

x 6∈ a | y 6∈ b

a 6∈ P(b)
¬P

εx ∈ a, εx 6∈ b
with εx = ε(x).¬(x ∈ a ⇒ x ∈ b)

x 6∈ { y | P (y) }
¬{|}

¬P (x)

a = b =
X 6∈ a,X 6∈ b | X ∈ a,X ∈ b

a 6= b
6=

εx 6∈ a, εx ∈ b | εx ∈ a, εx 6∈ b
with εx = ε(x).¬(x ∈ a ⇔ x ∈ b)

Rules for Derived Constructs

x ∈ a ∪ b ∪
x ∈ a | x ∈ b

x ∈ a ∩ b ∩
x ∈ a, x ∈ b

x ∈ a− b −
x ∈ a, x 6∈ b

x 6∈ a ∪ b
¬∪

x 6∈ a, x 6∈ b
x 6∈ a ∩ b

¬∩
x 6∈ a | x 6∈ b

x 6∈ a− b
¬−

x 6∈ a | x ∈ b

x ∈ { e1, . . . , en } {}
x = e1 | . . . | x = e1

x 6∈ { e1, . . . , en } ¬{}
x 6= e1, . . . , x 6= en

x ∈ ∅ ∅�

Rules for Binary Relation Constructs: First Series

(x, y) ∈ a−1

a−1

(y, x) ∈ a

x ∈ dom(a)
dom

(x, εy) ∈ a
with εy = ε(y).((x, y) ∈ a)

y ∈ ran(a)
ran

(εx, y) ∈ a
with εx = ε(x).((x, y) ∈ a)

(x, y) 6∈ a−1

¬a−1

(y, x) 6∈ a
x 6∈ dom(a)

¬dom
(x, Y ) 6∈ a

y 6∈ ran(a)
¬ran

(X, y) 6∈ a

(x, z) ∈ a; b
;

(x, εy) ∈ a, (εy, z) ∈ b
with εy = ε(y).((x, y) ∈ a ∧ (y, z) ∈ b)

(x, z) 6∈ a; b ¬;
(x, Y ) 6∈ a | (Y, z) 6∈ b

(x, y) ∈ id(a)
idx = y, x ∈ a, y ∈ a

(x, y) ∈ aC b
C

(x, y) ∈ b, x ∈ a
(x, y) ∈ aB b

B
(x, y) ∈ a, y ∈ b

(x, y) 6∈ id(a)
¬id

x 6= y | x 6∈ a | y 6∈ a
(x, y) 6∈ aC b

¬C
(x, y) 6∈ b | x 6∈ a

(x, y) 6∈ aB b
¬B

(x, y) 6∈ a | y 6∈ b

Fig. 3. Superdeduction Rules for the B Set Theory
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Fig. 4. Proof Time and Proof Size Comparative Benchmarks

4 Implementation and Benchmarks

The extension of Zenon for the B set theory described in Section 3 has been
implemented thanks to the ability of Zenon to extend its core of deductive rules.
The motivation of this extension is to verify B proof rules of Atelier B, and in
particular rules coming from the database maintained by Siemens IC-MOL. Re-
garding benchmarks, we consider a selection of rules of this database consisting
of well-typed and well-defined rules, which involve the B set constructs handled
by our extension, i.e. all the constructs of the B-Book [1] until the override con-
struct. This represents 1,397 rules (over a total of 5,281 rules), and we propose
two benchmarks whose results are gathered in Figure 4.

The first benchmark aims to compare our extension of Zenon with the ap-
proach described in [5], where the set formulas must be preliminarily normalized
(in order to obtain first order logic formulas containing only the membership
set operator) before calling Zenon. Over the 1,397 selected rules, our extension
proves 1,340 rules (96%), while our initial approach proves 1,145 rules (82%).
The left-hand side graph of Figure 4 presents a comparison of both approaches
in terms of proof time (run on an Intel Core i5-2500K 3.30GHz/12GB computer)
for a subset of the 1,397 selected rules, where both approaches succeed in finding
a proof (the time measures include the compilation of Coq proofs generated by
Zenon), i.e. for 1,145 rules. In this figure, a point represents the result for a rule,
and the x/y-axes respectively correspond to the approach with pre-normalization
of the formulas and to our extension using superdeduction. On average, the su-
perdeduction proofs are obtained 67 times faster (the best ratio is 1,540).

We propose a second benchmark whose purpose is to compare our extension
of Zenon using superdeduction with another extension of Zenon for the B set
theory, where the proposition rewrite rules are not computed into superdeduction
rules, but just unfolded/folded (like in Prawitz’s approach). The comparison
consists in computing the number of proof nodes of each proof generated by



Zenon. We consider a subset of 1,340 rules, for which both extensions succeed
in finding a proof. The results are summarized by the right-hand side graph of
Figure 4, where a point represents the result for a rule, and where the x/y-axes
respectively correspond to the extension without and with superdeduction. As
can be seen, the major part of proofs in the latter are on average 1.6 times
shorter than the former proofs (the best ratio is 6.25).

5 Conclusion

We have proposed a method which allows us to develop tableaux modulo theories
using superdeduction. This method has been presented in the framework of the
Zenon automated theorem prover, and applied to the set theory of the B method.
This has allowed us to provide another prover to Atelier B, which can be used
to verify B proof rules automatically. We have also proposed some benchmarks
using rules coming from the database maintained by Siemens IC-MOL. These
benchmarks have emphasized significant speed-ups both in terms of proof time
and proof size compared to previous and alternative approaches.

As future work, we first aim to generalize our approach of superdeduction for
Zenon and provide a generator of superdeduction rules from proposition rewrite
rules. This will allow us to generate automatically a superdeduction prover from
a theory, provided that a part of the axioms of this theory can be turned into
proposition rewrite rules. We also plan to extend our implementation realized for
verifying B proof rules in order to deal with a larger set of rules of the database
maintained by Siemens IC-MOL. Finally, we intend to study some properties of
this system for the B set theory, such as consistency and completeness.

Acknowledgement. Many thanks to G. Burel and O. Hermant for their detailed
comments on this paper, to G. Dowek for seminal discussions of this work, and
to D. Doligez for his help in the integration of superdeduction into Zenon.

References

1. J.-R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.

2. R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated Theo-
rem Prover Producing Checkable Proofs. In Logic for Programming Artificial Intelli-
gence and Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages 151–165, Yerevan
(Armenia), Oct. 2007. Springer.

3. P. Brauner, C. Houtmann, and C. Kirchner. Principles of Superdeduction. In Logic
in Computer Science (LICS), pages 41–50, Wrocław (Poland), July 2007. IEEE
Computer Society Press.

4. C. Houtmann. Axiom Directed Focusing. In Types for Proofs and Programs
(TYPES), volume 5497 of LNCS, pages 169–185, Torino (Italy), Mar. 2008. Springer.

5. M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois. Verifying B Proof Rules
using Deep Embedding and Automated Theorem Proving. In Software Engineering
and Formal Methods (SEFM), volume 7041 of LNCS, pages 253–268, Montevideo
(Uruguay), Nov. 2011. Springer.


